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Abstract

The probability distribution of the structure factors with
non-integral indices is derived in P1Å . For integral values
of at least one of the indices, the intensity distribution
coincides with that provided by Wilson's statistics, but
may strongly differ when the indices are (or are close to)
half-integers. The deviations are stronger when the
integral part of the indices is small, and increase with
the size of the structure. In favourable circumstances,
moduli and phases of the re¯ections may be accurately
estimated.

1. Symbols and notation

N: number of atoms in the unit cell
fj : scattering factor of the jth atom (thermal factor
included)
h: three-dimensional index with integral components
(h, k, l)
p: three-dimensional index with rational components
(p1, p2, p3)
ps � p1 � p2 � p3

F: structure factor
E: normalized structure factor
': phase of the structure factor

�1 �
PN
j�1

fj

�2 �
PN
j�1

f 2
j

Zj : atomic number of the jth atom.

2. Introduction

In paper I of this series (Giacovazzo & Siliqi, 1998;
hereafter paper I), the statistical properties of the
structure factors with rational indices were investigated.
Three assumptions were made:

(a) The structure factors refer to a single unit cell, so
that rational indices can be considered.

(b) The atomic coordinates were assumed to be the
primitive random variables, uniformly distributed in the

interval (0, 1), while the re¯ection indices were kept
®xed. When p has non-integral components, this condi-
tion is not equivalent to the assumption that 2�h � rj is
uniformly distributed over the trigonometric circle.

(c) No symmetry elements were considered. Thus the
conclusive formulae were strictly valid for P1.

The main results of paper I may be summarized as
follows:

(i) The distribution P(|Fp|) shows remarkable differ-
ences from Wilson's distribution P(|Fh|); the differences
increase when p approaches vectors with half-integral
indices, and decrease when one of the indices ap-
proaches an integral value and/or when the integral
parts of the index components increase.

(ii) In the absence of any prior information about the
structure, phase predictions may be made with good
reliability when | p| is not large and its components are
close to half-integers.

(iii) The distribution P(|Ep|) and P('p) are not
universal but depend on the structure complexity.

(iv) Conditional probabilities P('p||Fp|) and P(|Fp||'p)
are derived, which are able to exploit prior information
on the speci®c structure.

This paper is devoted to the derivation of the statis-
tical properties of the structure factors with rational
indices in the space group P1Å under the assumptions (a)
and (b). The relative distributions will be called centric,
by analogy with Wilson's statistics (Wilson, 1942). As in
P1, the distributions will show unconventional features
which are expected to be useful for the solution of the
phase problem (see the Introduction of paper I for
useful references on this subject).

3. About the statistical problem

Let us suppose that the variables xj , yj , zj ,
j � 1; . . . ;N=2, are independently and uniformly
distributed in the interval (0, 1). In order to keep all the
atoms in the unit cell [i.e. xj, yj, zj, j � 1; . . . ;N,
distributed in the interval (0, 1)], N=2 symmetry-
equivalent atoms are generated by applying the inver-
sion centre at (1=2; 1=2; 1=2). Then,
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Fp �
PN=2

j�1

fj

ÿ
exp�2�i�p1xj � p2yj � p3zj��

� expf2�i�p1�1ÿ xj� � p2�1ÿ yj� � p3�1ÿ zj��g
�

� Ap � iBp;

where

Ap �
PN=2

j�1

fj�cos�2�p � rj� � cos 2��ps ÿ p � rj��

� 2 cos�ps

PN=2

j�1

fj cos��ps ÿ 2�p � rj�
" #

� cos��ps�A0p; �1�

Bp �
PN=2

j�1

fj�sin�2�p � rj� � sin 2��ps ÿ p � rj��

� 2 sin�ps

PN=2

j�1

fj cos��ps ÿ 2�p � rj�
" #

� sin��ps�A0p �2�
and

A0p � 2
PN=2

j�1

fj cos��ps ÿ 2�p � rj�: �3�

The phase of Fp is then given by

'p � tanÿ1
��sin��ps�A0p�=�cos��ps�A0p�

	
: �4�

'p coincides with �ps if A0p is positive, and with
��1� ps� if A0p is negative. Accordingly,

Fp � A0p exp�i�ps�
and, vice versa,

A0p � Fp exp�ÿi�ps�
� jFpj exp�i�'p ÿ �ps��
� jFpj cos�'p ÿ �ps�: �5�

All the phases are therefore symmetry restricted to two
values: special cases occur when ps � h [then 'p �
�0; ��], or when ps � �2h� 1�=2 (then 'p � ��=2).

In accordance with (1) and (2), Bp and Ap are
algebraically related via the relationship

Bp � Ap tan��ps�:
Since p1, p2, p3 are ®xed parameters in our statistical
approach, the joint probability distribution P(Ap, Bp)
coincides with

P�Ap���Bp ÿ Ap tan��ps��;
where � is the Dirac delta function. Thus, P(Ap, Bp) is
completely known if P(Ap) is known. In turn, Ap is
algebraically related to A0p via relationship (1): again
P(Ap) is known if P(A0p) is known. In conclusion, we

need only calculate the distribution P(A0p); the other
distributions will ensue from this one.

4. The distribution P(A0p)

The characteristic function C(u) of the distribution
P(A0p), e.g.

C�u� � hexp�iuA0p�i;
may be written in terms of the cumulants of the distri-
bution. If only terms up to the second order are
considered, we have

C�u� ' exp�iK1uÿ K2u2=2�:
Then,

P�A0p� ' �2��ÿ1
R�1
ÿ1

C�u� exp�ÿiuA0p� du

� �2��ÿ1
R�1
ÿ1

exp�ÿiu�A0p ÿ K1� ÿ K2u2=2� du:

The integral may be calculated by applying the standard
formula (Gradshteyn & Ryzhik, 1965)R�1

ÿ1
exp�ituÿ qu2=2� � �2�=q�1=2 exp�ÿt2=2q�:

We obtain

P�A0p� ' �2�K2�ÿ1=2 expfÿ��A0p ÿ K1�2�=�2K2�g: �6�
In accordance with Appendix A, the following expres-
sions of the cumulants arise,

K1 � m1 � hA0pi � �1cp1=2cp2=2cp3=2; �7a�

m2 � hA2
0pi

� �2�1� cp1
cp2

cp3
ÿ 2c2

p1=2c2
p2=2c2

p3=2�
��2

1c2
p1=2c2

p2=2c2
p3=2; �7b�

K2 � m2 ÿm2
1

� �2�1� cp1
cp2

cp3
ÿ 2c2

p1=2c2
p2=2c2

p3=2�; �7c�
where

cpi
� sin�2�pi�=�2�pi�;

cpi=2 � sin��pi�=��pi�:
The distribution (6) is the ®rst result of this paper: A0p is
normally distributed about K1 with variance given by K2.
It may be noticed that cpi=2 � 0 for integral values of pi,
and that cpi=2 � �1=��pi� when pi is a half-integer.
Accordingly, A0p is always estimated to be zero when at
least one of the indices is an integer. The most favour-
able situation occurs when p1, p2, p3 are all half-integers;
then, cpi

� 0 for i � 1, 2, 3, and
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hA0pi � K1 � ��1��3p1p2p3�ÿ1;

K2 � �2�1ÿ 2��3p1p2p3�ÿ2�:
The best estimates will be obtained for small values of
|p1|, |p2|, |p3|; for these, |hA0pi| is large and K2 (the
variance of the estimate) is relatively small. Usually K2 is
much larger than K1, and when |pi| > 1 for i� 1, 2, 3, it is
not too far away from �2. Therefore the estimate of A0p

provided by (5) has a standard deviation smaller than,
but close to, Wilson's standard deviation.

5. The distributions P(Ap), P(Bp), P(Fp)

Combining (1) with (6) gives

P�Ap� ' �2�K2�ÿ1=2�cos�ps�ÿ1

�exp�ÿ�Ap ÿ K1 cos�ps�2=�2K2 cos2 �ps��:
�8�

Combining (2) with (6) gives

P�Bp� ' �2�K2�ÿ1=2�sin�ps�ÿ1

� exp�ÿ�Ap ÿ K1 sin�ps�2=�2K2 sin2 �ps��:
�9�

Since

jFpj2 � A2
p � B2

p � A2
0p;

we can calculate the distribution P(|Fp|) by combining
(6) with the relation |Fp| � |A0p|. We have

P�jFpj� � P�jA0pj� � P�ÿjA0pj�
� �2�K2�ÿ1=2 exp��ÿA2

0p ÿ K2
1�=�2K2��

� �exp�jA0pjK1=K2� � exp�ÿjA0pjK1=K2��;
from which

P�jFpj� � exp�ÿK2
1=�2K2���2=��K2��1=2

� exp�ÿjFpj2=�2K2�� cosh�jFpjK1=K2�: �10�
The distribution (10) may be considered the product of
an exponential term (i.e. the normal or, also, Wilson's
component) and of a modulation function (i.e. the
hyperbolic cosine term). This last component is
responsible for the unconventional features of the
distribution.

Let us now suppose that the ith index is an integer;
then cpi

� cpi=2 � 0 , K1 � 0, K2 � �2. In this case, (10)
reduces to Wilson's centric distribution,

P�jFj� � �2=���2��1=2 exp�ÿjFj2=�2�2��:
Vice versa, structure factors for which none of the three
indices has an integral value are not distributed
according to Wilson's statistics. It may be better to study
(10) in terms of normalized structure factors, provided
we know the features of the function h|Fp|2i.

6. About the expected value of |Fp|2

If we introduce into (6) the change of variable

A0pn � �A0p ÿ K1�=K
1=2
2 ;

we have

P�A0pn� � �2��ÿ1=2 exp�ÿA2
0pn=2�:

Denoting |Fpn| � |A0pn| gives

P�jFpnj� � P�jA0pnj� � P�ÿjA0pnj�
� �2=��1=2 exp�ÿA2

0pn=2�;
which coincides with the Wilson distribution. The above
`normalization' process leads to a distribution that does
not depend on the structural complexity and on the data
resolution, but it is of little use in practice; indeed, it
requires prior knowledge of the sign of A0p. We prefer,
therefore, to investigate the properties of the function
h|Fp|2i and normalize the structure factor in the usual
way.

The expected value of |Fp|2 is given by

hjFpj2i �
R1
0

jFpj2P�jFpj� djFpj; �11�

which may be estimated via the formula (Gradshteyn &
Ryzhik, 1965)R1

0

x2 exp�ÿ�x2� cosh�
x� dx

� ��1=2�2�� 
2�=8�5=2� exp�
2=4��:
We obtain

hjFpj2i � K2 � K2
1 � m2:

According to (7b), h|Fp|2i is a rather complicated oscil-
lating function. To describe its basic properties, we
analyse the ratio h|Fp|2i=�2 for an equal-atom structure.
In this case, �2

1 � N�2 and

hjFpj2i=�2 � 1� cp1
cp2

cp3
� �N ÿ 2�c2

p1=2c2
p2=2c2

p3=2:

�12�
It is easily veri®ed that:

(a) For p1 � p2 � p3 � 0, then cpi
� cpi=2 � 1 for i � 1,

2, 3, and, consequently,

hjFpj2i � N�2 � N2Z2;

in agreement with the well known relation F000 � NZ.
This result suggests that our statistical approach should
also hold when all three indices assume vanishing or
almost vanishing values.

(b) If pi is an integer then cpi
� cpi=2 � 0 , and, in

accordance with x5, h|Fp|2i � �2, as for Wilson's statis-
tics.

(c) If pi is a half-integer then cpi
� 0 and cpi=2 �

�1=��pi�. Accordingly, h|Fp|2i=�2 will attain a local
maximum when all three indices have half-integral
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values. The practical consequence is that the moduli of
the structure factors with all three indices close to half-
integers are expected to be larger (on average) than the
moduli of the re¯ections with one or more integral
indices. This feature is con®rmed by Table 1, where the
calculated |F | values of some selected re¯ections of
NEWQB (Grigg et al., 1978), a P1Å structure with
chemical formula C24H20N2O5 (two identical molecules
in the asymmetric unit), are shown. The atomic coordi-
nates of this structure are given in the ®le test of
structures distributed by G. Sheldrick, University of
GoÈ ttingen.

To avoid a rather complicated three-dimensional
representation of (12), we draw it in the one-dimen-
sional case, for which

hjFpj2i=�2 � 1� cp � �N ÿ 2�c2
p=2: �13�

In Fig. 1, we plot (13) against p for RAND250 and
RAND500, two random one-dimensional equal-atom
structures (all the atoms are assumed to be carbon, with
the same isotropic temperature factor BT � 5) with N �
250 and 500, respectively. We observe:

(a) h|Fp|2i=�2 is an oscillating function with maxima at
half-integral values of p (but for p � 1=2) and minima at
integral values;

(b) the amplitudes of the oscillations are quite large
for small values of p, decay with p, but are still non-
negligible up to p � 9:5 (low convergence to unity);

(c) h|Fp|2i=�2 regularly decreases in the interval (0, 1):
thus p � 0:5 is the only half-integer index which does
not correspond to a relative maximum;

(d) the absolute maximum is attained at p � 0 (where
h|Fp|2i=�2 � N);

(e) the amplitudes of the oscillations increase with N.
It may be useful to compare (12) with the corre-

sponding expression derived in paper I for the acentric
case [equation (I.20)]. For N suf®ciently large,

�hjFpj2i=�2�c ' �hjFpj2i�=�2�a � cp1
cp2

cp3
;

where c and a stand for `centric' and `acentric', respec-
tively. Both the ratios h|Fp|2i=�2 attain their maxima at
half-integral values, where cpi

� 0; therefore, the oscil-
lation sizes in P1 and P1Å are almost identical for struc-
tures of equivalent complexity.

The reader can now easily extend the above results to
the three-dimensional case, with one warning: as an
effect of the three-dimensionality, the intensity oscilla-
tions die down rapidly with increasing values of | p1|, | p2|,
| p3|.

7. The normalized centric distribution P(|Ep|)

As for the acentric case, we de®ne

Ep � Fp=hjFpj2i1=2: �14�

Table 1. NEWQB: structure-factor moduli and phases
calculated from published atomic parameters for a

selected set of indices

In the last two columns the values of �ps and of P('p = �ps) are quoted.

p2 p1 p3 |F | ' (�) �ps (�) P('p = �ps)

0.0 0.0 0.0 791.87 360 360 1.0
0.0 0.0 0.5 494.77 90 90 1.0
0.0 0.5 0.0 504.81 90 90 1.0
0.5 0.0 0.0 495.54 90 90 1.0
0.5 0.0 0.5 297.70 180 180 1.0
0.5 0.5 0.5 341.38 270 270 1.0
0.5 0.5 1.0 2.45 360 360 0.5
0.5 0.5 1.5 162.43 270 90 0.01
0.5 1.0 0.0 116.53 270 270 0.5
0.5 1.0 0.5 157.18 360 360 0.5
0.5 1.0 1.0 68.51 90 90 0.5
0.5 1.0 1.5 20.18 360 180 0.5
0.5 1.5 0.0 49.91 180 360 0.09
0.5 1.5 0.5 11.55 270 90 0.42
0.5 1.5 1.0 75.44 180 180 0.5
0.5 1.5 1.5 108.09 270 270 0.75
1.0 0.0 0.0 0.43 360 180 0.5
1.0 0.0 0.5 71.76 90 270 0.5
1.0 0.0 1.0 120.29 180 360 0.5
1.0 0.0 1.5 124.87 270 90 0.5
1.0 0.5 0.0 72.25 270 270 0.5
1.0 0.5 0.5 64.79 360 360 0.5
1.5 0.0 0.0 149.71 90 270 0.0
1.5 0.0 0.5 166.75 180 360 0.0
1.5 0.0 1.0 78.74 270 90 0.5
1.5 0.0 1.5 44.05 360 180 0.67
1.5 0.5 0.0 140.37 180 360 0.0
1.5 0.5 0.5 134.45 270 90 0.02
1.5 0.5 1.0 21.56 90 270 0.56
1.5 1.0 0.0 117.70 270 90 0.5
1.5 1.5 0.5 32.32 90 270 0.58
1.5 1.5 1.5 28.98 270 90 0.47

Fig. 1. The ratio h|Fp|2i=�2 is plotted against p for the two random
structures RAND250 and RAND500.
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According to this de®nition, E000 � 1, whereas, using
Wilson's statistics, E000 � N1/2.

Combining (10) with (14) gives

P�jEpj� � �2m2=��K2��1=2 exp�ÿK2
1=�2K2��

�exp�ÿjEpj2m2=�2K2�� cosh�jEpjm1=2
2 K1=K2�:

�15�
The study of the distribution (15) may be properly made
in the one-dimensional case; the extension to three

dimensions is trivial. Accordingly, we introduce into (15)
the cumulants relative to the one dimensional case,

K1 � m1 � �1cp=2;

m2 � �2�1� cp ÿ 2c2
p=2� ��2

1c2
p=2;

K2 � �2�1� cp ÿ 2c2
p=2�:

The distribution (15), as obtained for RAND250, is
plotted in Fig. 2 for selected values of p. We note:

(a) If p is very close to some integral number and/or is
large, then P(|Ep|) will be closer to the centric Wilson
distribution (analogous results were found in P1). The
order of the curves (in terms of deviation from Wilson's
distribution) is 1.9, 1.1, 1.8, 1.2, 1.7, 1.3, 1.6, 1.4, 1.5.

(b) As soon as p approaches some half-integer, the
mode of the distribution moves towards |E| � 1, and the
distribution tends to be more symmetric about the
mode.

In order to show how the distribution depends on the
integral part of p, we draw in Fig. 3, for RAND250, the
curves corresponding to selected values of p in the
interval (2.0, 2.9). We see that the main features noted
in Fig. 2 also hold for Fig. 3, but the deviations from
Wilson's distribution are smaller in Fig. 3 than in Fig. 2.

While the P(|Eh|) curves are universal (they do not
vary for structures of different complexity), the P(|Ep|)
curves are not structure invariants. In Fig. 4 we show the
curves calculated for selected values of p in the range
(2.0, 3.0) for RAND500. Comparing them with those
drawn in Fig. 3 suggests that the deviations of the P(|E|)
curves from Wilson's distribution increase with the
structural complexity.

Fig. 3. RAND250: the P(|E|) distribution is plotted for selected values
of p between 2 and 3.

Fig. 4. RAND500: the P(|E|) distribution for selected values of p
between 2 and 3.

Fig. 2. RAND250: the P(|E|) distribution is plotted for selected values
of p between 1 and 2.
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8. The distribution P(up||Fp|)

Let s0p be the sign of A0p. In accordance with (6), the
probability that A0p is positive or negative is given by

P�s0p � �� � Lÿ1�2�K2�ÿ1=2 exp�ÿ�jA0pj ÿ K1�2=�2K2��
and

P�s0p � ÿ� � Lÿ1�2�K2�ÿ1=2 exp�ÿ�jA0pj � K1�2=�2K2��
where L is a suitable scaling factor. Then

P�s0p � ÿ�=P�s0p � �� � exp�ÿ2jA0pjK1=K2�
and

P�s0p � �� � P�s0p � ��=�P�s0p � �� � P�s0p � ÿ��
� 0:5� 0:5 tanh�jA0pjK1=K2�: �16�

Since |A0p| is kept ®xed in these calculations, (16) is
really the conditional probability of the sign s0p given
|A0p| [i.e. P(s0 � �1||A0p|); for shortness we will not
emphasize this property in the symbol].

Since |A0p| � |Fp|, we can write (16) in the form

P�s0p � �� � 0:5� 0:5 tanh�jFpjK1=K2�: �17�
Thus the expected sign of A0p is plus or minus according
to whether K1 is positive or negative; the reliability of
the sign prediction increases with increasing values of
|Fp|.

We now rewrite (4) in the form

'p � tanÿ1
��sin��ps�s0p�=�cos��ps�s0p�

	
; �18�

which emphasizes the fact that 'p is de®ned without
ambiguity when s0p is known. Since the sign of A0p may
be probabilistically estimated via (17), the following
probabilistic formula arises,

P�'p � �ps� � 0:5� 0:5 tanh�jFpjK1=K2�: �19�

Values of P smaller than 0.5 indicate that the most
probable phase of 'p is ��1� ps).

In the last two columns of Table 1, we give, for
NEWQB, the values of �ps and P('p � �ps). The
agreement between predictions and true (i.e. calculated
from published atomic parameters) phases is excellent;
in accordance with theory, no phase prediction is
possible for re¯ections for which one of the indices is an
integer different from zero.

9. About the computability of P(|Ep|) and P(up||Fp|) for
0 �� pi < 1, i � 1, 2, 3

Let us consider the re¯ections with indices satisfying the
relation 0 � pi < 1 for i � 1, 2, 3.

As soon as the components (p1, p2, p3) approach
(0, 0, 0), very large arguments of the exponential and of
the hyperbolic cosine occur in (15); thus, even modern
computers can perform the calculations necessary to
estimate P(|Ep|) only when �p2

1 � p2
2 � p2

3� is larger than
a given threshold. Such behaviour is not unexpected;
indeed, P(|Ep|) must coincide, at p � �0; 0; 0�, with the
Dirac delta function

P�jEpj� � ��jEpj ÿ 1�;

centred at E000 � 1 (indeed the value of E000 is de®ned
without uncertainty). Luckily, P(|Ep|) is easily predict-
able where it is not computable. In Fig. 5 we show, for
RAND250, the P(|E|) curves calculated for selected
indices in the range (0, 1). As soon as p approaches zero,
P(|Ep|) will approach a delta function at |Ep| � 1. Vice

Fig. 5. RAND250: the P(|E|) curves for p � 1, 0.9, 0.8, 0.7 are shown.
Fig. 6. NEWQB. Experimental distribution P(|E|) for half-integral

index re¯ections compared with Wilson's centric distribution.
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versa, it may be assumed that |Ep| is quite close to unity
for indices very close to zero.

P('p) is always computable, even for indices very
close to zero. In this domain, very high probability
values will be attained as soon as (p1, p2, p3) approaches
(0, 0, 0) ('000 � 2� without uncertainty). Since s0p is
always positive in this domain, 'p is always very close to
�ps.

10. Centric and acentric distributions

It may be observed that, for integral values of p1, p2, p3,
the acentric and centric curves have quite different
forms (the classical Wilson distributions), while both the
centric [i.e. equation (15)] and the acentric [i.e. equation
(I.11)] distributions approach a normal distribution
centred on |E| � 1 as soon as p1, p2, p3 approach small
modulus half-integers. A question arises: can a centric
distribution be discriminated from an acentric one for
structures of the same complexity via the statistical
analysis of homologous types of re¯ections? The
problem involves a different type of statistics (that for
which the indices are the primitive random variables
while the atomic positions are kept ®xed) and may be
solved on an experimental basis. We have calculated,
from the published atomic parameters of NEWQB, the
structure-factor moduli corresponding to re¯ections
with half-integral indices (they constitute the subset for
which centric and acentric curves are more similar to
each other). The corresponding experimental distribu-
tion (full line) is shown in Fig. 6; it agrees well with
Wilson's centric distribution (broken line), thus
suggesting a positive answer to our question. The reason

for such behaviour is suggested by referring to Fig. 7,
where, for two random three-dimensional structures
with equal structural complexity (i.e. equal unit cell and
equal number of atoms), (I.11) and (15) are shown for
selected re¯ections with half-integral indices. As soon as
|p1| � |p2| � |p3| increases, the distributions rapidly
converge to the acentric and to Wilson's centric distri-
butions, respectively.

11. Conclusions

The distribution of the structure factors with rational
indices has been studied in P1Å . The main results may be
summarized as follows:

(a) The distribution P(|Fp|) may be quite different
from Wilson's distribution P(|Fh|). The differences
increase when p approaches vectors with half-integral
indices, and decrease when the integral part of the index
components increase. When one of the components is an
integer, P(|Fp|) reduces to Wilson's centric distribution.

(b) The phase 'p may be predicted with good relia-
bility when |p| is small and all three indices are close to a
half-integer.

(c) P(|Ep|) and P('p) are not universal, as in Wilson's
statistics, but depend on the structural complexity.

The integration of the results obtained in this paper
with those derived in paper I shows that Wilson's
statistics are part of a larger family, the statistics of the
structure factors with rational indices.

APPENDIX A
Calculation of the cumulants in P1Å

Let us suppose that the variables xj, yj, zj, j� 1, . . . , N=2,
are independently and uniformly distributed in the
interval (0, 1). Then, according to equation (3),

m1 � hA0pi � 2
PN=2

j�1

fj

 !
hcos��ps ÿ 2�p � rj�i

� �1�cos��ps�cp � sin��ps�sp�; �20�
where

cp � hcos�2�p � rj�i
� cp1

cp2
cp3
ÿ cp1

sp2
sp3
ÿ sp1

sp2
cp3
ÿ sp1

cp2
sp3
;

sp � hsin�2�p � rj�i
� sp1

cp2
cp3
ÿ sp1

sp2
sp3
� cp1

sp2
cp3
� cp1

cp2
sp3
;

spi
� �1ÿ cos�2�pi��=�2�pi�:

It may be shown (for brevity the demonstration is not
given) that the following relation holds:

cos�2�ps�c2p � sin�2�ps�s2p � cp1
cp2

cp3
: �21�

Accordingly, (20) reduces to

Fig. 7. The P(|E|) distributions (I.11) and (15) for selected half-integral
indices. The curves refer to three-dimensional random structures of
equal complexity.
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m1 � �1cp1=2cp2=2cp3=2:

The moment m2 may be calculated as follows,

m2 � 4
PN=2

j�1

fj cos��ps ÿ 2�p � rj�
" #2* +

� 4
PN=2

j�1

f 2
j �1� hcos�2�ps ÿ 4�p � rj�i�=2

� 4
PN=2

j1 6�j2�1

fj1
fj2

 !
�cos��ps�cp � sin��ps�sp�2:

Since PN=2

j1 6�j2�1

fj1
fj2
� �2

1=4ÿ�2=2;

we have

m2 � �2�1� cos�2�ps�c2p � sin�2�ps�s2p�
� 4��2

1=4ÿ�2=2��cos��ps�cp � sin��ps�sp�2:

Applying (21) gives

m2 � �2�1� cp1
cp2

cp3
ÿ 2c2

p1=2c2
p2=2c2

p3=2�
��2

1c2
p1=2c2

p2=2c2
p3=2:
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